How to Remove Duplicates from Pandas DataFrame

Need to remove duplicates from Pandas DataFrame?

If so, you can apply the following syntax to remove duplicates from your DataFrame:

df.drop_duplicates()

In the next section, you’ll see the steps to apply this syntax in practice.

Steps to Remove Duplicates from Pandas DataFrame

Step 1: Gather the data that contains the duplicates

Firstly, you’ll need to gather the data that contains the duplicates.

For example, let’s say that you have the following data about boxes, where each box may have a different color or shape:

Color Shape
Green Rectangle
Green Rectangle
Green Square
Blue Rectangle
Blue Square
Red Square
Red Square
Red Rectangle

As you can see, there are duplicates under both columns.

Before you remove those duplicates, you’ll need to create Pandas DataFrame to capture that data in Python.

Step 2: Create Pandas DataFrame

Next, create Pandas DataFrame using this code:

import pandas as pd

boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
         'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle']
        }
df = pd.DataFrame(boxes, columns = ['Color', 'Shape'])

print(df)

Once you run the code in Python, you’ll get the same values as in step 1:

   Color      Shape
0  Green  Rectangle
1  Green  Rectangle
2  Green     Square
3   Blue  Rectangle
4   Blue     Square
5    Red     Square
6    Red     Square
7    Red  Rectangle

Step 3: Remove duplicates from Pandas DataFrame

To remove duplicates from the DataFrame, you may use the following syntax that you saw at the beginning of this guide:

df.drop_duplicates()

Let’s say that you want to remove the duplicates across the two columns of Color and Shape.

In that case, apply the code below in order to remove those duplicates:

import pandas as pd

boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
         'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle']
        }
df = pd.DataFrame(boxes, columns = ['Color', 'Shape'])

df_duplicates_removed = df.drop_duplicates()
print(df_duplicates_removed)

As you can see, only the distinct values across the two columns remain:

   Color      Shape
0  Green  Rectangle
2  Green     Square
3   Blue  Rectangle
4   Blue     Square
5    Red     Square
7    Red  Rectangle

But what if you want to remove the duplicates on a specific column, such as the Color column?

In that case, you can specify the column name using a subset:

df.drop_duplicates(subset=[‘Color’])

So the full Python code to remove the duplicates for the Color column would look like this:

import pandas as pd

boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
         'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle']
        }
df = pd.DataFrame(boxes, columns = ['Color', 'Shape'])

df_duplicates_removed = df.drop_duplicates(subset=['Color'])
print(df_duplicates_removed)

Here is the result:

   Color      Shape
0  Green  Rectangle
3   Blue  Rectangle
5    Red     Square

You may want to check the Pandas Documentation to learn more about removing duplicates from a DataFrame.