You may use the following template to convert a dictionary to Pandas DataFrame:
import pandas as pd my_dict = {'key_1': 'value_1', 'key_2': 'value_2', ...} df = pd.DataFrame(list(my_dict.items()), columns=['column_1', 'column_2']) print(df)
Steps to Convert a Dictionary to Pandas DataFrame
Step 1: Gather the Data for the Dictionary
To start, gather the data for your dictionary. For example, let’s gather the following data about products and prices:
Product | Price |
Computer | 1500 |
Monitor | 300 |
Printer | 150 |
Desk | 250 |
Step 2: Create the Dictionary
Next, create the dictionary.
For our example, you may use the following code to create the dictionary:
my_dict = {'Computer': 1500, 'Monitor': 300, 'Printer': 150, 'Desk': 250} print(my_dict) print(type(my_dict))
Run the code in Python, and you’ll get this dictionary:
{'Computer': 1500, 'Monitor': 300, 'Printer': 150, 'Desk': 250}
<class 'dict'>
Notice that the syntax of print(type(my_dict)) was add at the bottom of the code to confirm that we indeed got a dictionary.
Step 3: Convert the Dictionary to a DataFrame
For the final step, convert the dictionary to a DataFrame using this template:
import pandas as pd my_dict = {'key_1': 'value_1', 'key_2': 'value_2', ...} df = pd.DataFrame(list(my_dict.items()), columns=['column_1', 'column_2']) print(df)
For our example, here is the complete Python code to convert the dictionary to a DataFrame:
import pandas as pd my_dict = {'Computer': 1500, 'Monitor': 300, 'Printer': 150, 'Desk': 250} df = pd.DataFrame(list(my_dict.items()), columns=['Products', 'Prices']) print(df) print(type(df))
As you can see, the dictionary was converted to Pandas DataFrame:
Products Prices
0 Computer 1500
1 Monitor 300
2 Printer 150
3 Desk 250
<class 'pandas.core.frame.DataFrame'>