To add a prefix to each column name in Pandas DataFrame:
df = df.add_prefix('my_prefix')
Steps to Add Prefix to Each Column Name in Pandas DataFrame
Step 1: Create a DataFrame
To start with a simple example, let’s suppose that you have the following dataset with 3 columns:
Product | Price | Discount |
ABC | 750 | Yes |
DDD | 430 | No |
XYZ | 980 | No |
AAA | 250 | Yes |
CCC | 620 | No |
You can then create a DataFrame as follows:
import pandas as pd data = {'Product': ['ABC', 'DDD', 'XYZ', 'AAA', 'CCC'], 'Price': [750, 430, 980, 250, 620], 'Discount': ['Yes', 'No', 'No', 'Yes', 'No'] } df = pd.DataFrame(data) print(df)
Once you run the code in Python, you’ll get the following DataFrame:
Product Price Discount
0 ABC 750 Yes
1 DDD 430 No
2 XYZ 980 No
3 AAA 250 Yes
4 CCC 620 No
Step 2: Add Prefix to Each Column Name in Pandas DataFrame
Let’s suppose that you want to add the prefix of ‘Sold_‘ to each column name in the above DataFrame.
In that case, you’ll need to apply this syntax in order to add the prefix:
df = df.add_prefix('Sold_')
So for our example, the complete Python code would be:
import pandas as pd data = {'Product': ['ABC', 'DDD', 'XYZ', 'AAA', 'CCC'], 'Price': [750, 430, 980, 250, 620], 'Discount': ['Yes', 'No', 'No', 'Yes', 'No'] } df = pd.DataFrame(data) df = df.add_prefix('Sold_') print(df)
As you may see, the ‘Sold_‘ prefix was added to each column:
Sold_Product Sold_Price Sold_Discount
0 ABC 750 Yes
1 DDD 430 No
2 XYZ 980 No
3 AAA 250 Yes
4 CCC 620 No
But what if you just want to add a prefix to a single column (or a subset of columns)?
In that case, you may consider to use rename instead.
For instance, let’s say that you want to add a prefix (of ‘Sold_’) to the ‘Price‘ column only. Here is the Python code that you may use to:
import pandas as pd data = {'Product': ['ABC', 'DDD', 'XYZ', 'AAA', 'CCC'], 'Price': [750, 430, 980, 250, 620], 'Discount': ['Yes', 'No', 'No', 'Yes', 'No'] } df = pd.DataFrame(data) df = df.rename(columns={'Price': 'Sold_Price'}) print(df)
You’ll now see that the ‘Sold_’ prefix was only added to the ‘Price’ column:
Product Sold_Price Discount
0 ABC 750 Yes
1 DDD 430 No
2 XYZ 980 No
3 AAA 250 Yes
4 CCC 620 No
You can check the Pandas Documentation for further information about add_prefix.
You may also visit the following guide for the steps to add a suffix in Pandas DataFrame.